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This document is one of sixteen sections that comprise the final 
report prepared by the Minneapolis-Honeywell Regulator Company for the 
National Aeronautics and Space Administration under contract NASw-563. 
The report is issued in the following sixteen sections to facilitate 
u.@ating as 

1541-TR 1 

1541-TR 2 

1541-TR 7 

1 5 4 ~ ~ ~  8 

1541-TR 9 

1541-TR 10 

1541-TR 14 

1541-TR 15 

1541-TR 16 

progress warrants: 

Control of Plants Whose Representation Contains Derivatives 
VI LA12 Coiitrol Variable ..* 4-L 

Modes of Finite Response Time Control 

A Sufficient Condition in Optimal Control 

Time Optimal Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control ' 

Linear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

State Determination for a Flexible Vehicle Without a Mode 
Shape Re qui r ement 

An Application of the Quadratic Penalty Function Criterion 
to the Determination of a Linear Control for a Flexible Vehicle 

Minim Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretation of the Drift-Minimum 
Principle 

A Minimax Control for a Plant Subjected to a Known Load Disturbance 

Section 1 (1541-TR 1) provides the motivation for the study efforts 
The and objectively discusses the significance of the results obtained. 

results of inconclusive and/or unsuccessf'ul investigations are presented. 
Linear programming is reviewed in detail adequate for sections 6, 8, and 16. 

It is shown in section 2 that the purely formal procedure for synthe- 
sizing an optimum bang-bang controller for a plant whose representation 
contains derivatives of the control variable yields a correct result. 
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In section 3 it is shown that the problem of controlling m components 
(1 < m < n)A of the state vector for an n-th order linear constant coefficient 
plant, 70 zero in finite time can be reformulated as a problem of controlling 
a single component. 

Section 4 shows Pontriagin'sMaximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for computing the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9.  

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section 12 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. 
the concept of complete controllability. The drift minimum condition is 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 

In section 16 linear programming is used to determine a control function 
that minimizes the effects of a known load disturbance. I 
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ROCKET BOOSTER CONTROL SUMMARY 

ABSTRACT 

The automatic control research performed by Honeywell for 

NASA under contract NASw-563 is put into perspective by supplying 

motivation and indicating the significance of the results obtained. 

The 

0 

0 

0 

0 

0 

0 

e 

0 

efforts yielded: 

an algorithm suitable f o r  on-line computation of bounded 

control amplitude time-optimal controls; the target can be 

a point set described by a positive definite quadratic form, 

a good method f o r  designing bounded control amplitude and 

amplitude rate time optimal controls f o r  low order systems, 

procedures for developing bounded phase coordinate, time- 

optimal controllers, 

a method for measurement of the state f o r  flexible vehicles 

that does not require mode shape information, 

a method for accurately approximating linear stat-e controllers 

for flexible vehiclea that requires sensors lesser in number 

than the order of the plant representation, 

a general design method for linear controllers that minimize 

the effects of load disturbances, 

selectively invariant load disturbance controller design 

procedures , and 

a method for determination of open loop controllers that 

minimize the effects of known load disturbances. 
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Some theo re t i ca l  r e s u l t s  were a l so  obtained; namely: 

a demonstration that formal procedures for el iminat ing 

der iva t ives  of control  var iables  yields  cor rec t  r e s u l t s ,  

t h e  development of canonical modes of f i n i t e  response time: 

zon t r z l  was carr ied out using p,-cperties ~f z m p l e t e  

con t ro l l ab i l i t y ,  

a general  suff ic iency condition f o r  optimal control ,  

many r e s u l t s  yielding face ts  f o r  understanding the  bounded 

phase coordinate control problem, and 

an ana ly t i ca l  method for assessing the  e f f e c t s  of con t ro l l e r  

design based on a low o rde r  p lan t  model, 

// 
f3mMARrnS - -  / 

T h i s  discussion separates the e f f o r t s  i n t o  three  categories:  

i n i t i a l  condition controlp measurement (of the  s t a t e  vec tor ) ,  

and load disturbance control.  

categories  a re  re la ted  and then a swnmary of each e f f o r t  i s  

provided 

The e f f o r t s  i n  each of the 

Two appendices are included. Appendix A provides a review 

of  l i n e a r  programing. 

so lu t ions  of the  load disturbance control  problem are presented 

i n  Appendix B, A d - i - ~ b  

I n i t i a l  considerations leading toward 

I 
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INITIAL CONDITION CONTROL 

I n i t i a l  condition control i s  concerned with determining 

how t o  operate  the  control  var iables  so tha t  i n i t i a l  system e r r o r s  

a re  dr iven toward zero according t o  a prescribed c r i t e r i o n ,  

Three theo re t i ca l  questions were invest igated,  an algorithm t o  

permit on-line computatlon o f  optimal controls  was developed, 

and a number of r e s u l t s  f o r t h e  bounded phase coordinate control  

problem were obtained 

Mathematical representat ions f o r  p l an t s  qu i te  of ten  na tu ra l ly  

contain terms involving der ivat ives  of control  var iab les .  

these representat ions,  s t e p  changes i n  the amplitudes of the 

cont ro l  var iab les  would require considerat ion of impulse funct ions 

(and perhaps t h e i r  der ivat ives)  e 

With 

To avoid these d i f f i c u l t i e s  it 

i s  common p rac t i ce  (reference 1) t o  formally perform a t rans-  

formation tha t  r e s u l t s  i n  a plant  representat ion i n  .which 

der iva t ives  of the cont ro l  variable do not appear. Two questions 

na tu ra l ly  arise: 

va l id  r e s u l t s ?  

within the o r ig ina l  representat ion? Sect ion 2 shows the 

answer t o  the f i rs t  question i s  yes and ind ica tes  t he  answer 

t o  the second is  probably not,  

Do the  formal transformations y ie ld  general ly  

Could control synthesis  be b e t t e r  accomplished 

The presentat ion of the modes of f i n i t e  response t i m e  

cont ro l  problem (reference 2 )  i n  Sect ion 3 uses the condition 

of complete c o n t r o l l a b i l i t y  t o  replace a number of spec ia l  re- 

quirements i n  the o r i g i n a l  der ivat ion ,, 

Section 4 shows Pontr iaginss  M a x i m u m  Pr inciple  i s  of ten  a 
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s u f f i c i e n t  condition f o r  optimal control .  

An algorithm for determining the controls  t ha t  minimize 

the response t i m e  between a prescribed point  and a prescr ibed 

convex target set i s  presented i n  Sect ion 5, 

Sect ions 6, 7, 8, 9 and 10 present  d i f f e ren t  a t t acks  on 

t h e  bounded phase coordinate cont ro l  problem. A n  algorithm 

capable o f  computing time-optimal, bounded-phase coordinate,  

two-point boundary value problem t r a j e c t o r i e s  i s  presented i n  

Section 6 ;  the  computer requirements f o r  r ea l i z ing  t h e  I controls  

are demanding, 

t h i s  algorithm i s  simpler but  can only compute optimal t r a J e c t o r i e s  

by the backing out of the or igin process.  

phase coordinate problem wherein the cons t ra in ts  are on the  

control  amplitudes and their der iva t ives  i s  considered i n  Sect ion 9 .  

A general  procedure f o r  backing out  of the  o r ig in  is  developed 

which permits e x p l i c i t  cont ro l le r  design f o r  low o r d e r  systems. 

Sect ion 7 considers the existence of so lu t ions  t o  the  bounded 

phase coordinate control  problem by use of penalty funct ions.  

reformulation of a bounded phase coordinate problem i n t o  an 

ordinary problem i n  the  calculus of  var ia t ions  i s  presented i n  

Sect ion 10, 

A similar algorithm is  presented i n  Sect ion 8; 

The spec ia l  bounded 

A 

Summaries f o r  Sections 2 through 10 are now presented. 

Control Of Plants  Whose Representation, Contains Derivat ives  Of 

The Control Variable 

of cont ro l  f o r  which the  r i g h t  sides of the plant  equations contain 

der iva t ives  of the control  funct ions,  

Section 2 contains a discussion o f  problems 

It i s  a problem of 
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i n t e r e s t  t o  consider such systems under circumstances i n  which 

the controls  have d iscont inui t ies  of  the f irst  kind., This  re -  

quires  t r e a t i n g  control  system equations i n  which impulse control  

inputs  represented by the  der ivat ives  a r i s e .  

such systems have been t reated by purely formal procedures such as 

Laning's and B a t t i n t s  method (reference 1) f o r  e l imina t i rg  t h e  

Up t o  the present  time, 

cont ro l  der ivat ives  by performing a su i t ab le  coordinate t rans-  

formation, The question na tura l ly  ar ises  as t o  whether such 

formal procedures y i e ld  valid r e s u l t s .  

f o r  t r e a t i n g  the control  systems while allowing the  der iva t ives  of 

the controls  t o  remain were avai lable ,  how would t h e  two methods - 
d i r e c t  and formal, compare? The contents of Sect ion 2 include 

the  r e s u l t s  of a theo re t i ca l  inves t iga t ion  of  the aforementioned 

d i r e c t  approach and an example showing how these resuLts can be 

compared with the results obtained by t r e a t i n g  the same system 

formally , 

Modes O f  F i n i t e  Response Time Control 

autonomous system with a single control  var iable , ,  

general ,  several  modes of f i n i t e  response time control  f o r  such 

a system, 

mult iple  component regulat ion are def ined,  

cont ro l lab le  systems it is shown t h a t  mult iple  component regulat ion 

problems can be transformed in to  s ing le  component regulat ion 

problems. 

cont ro l  considered as control of a s ing le  input ,  s ing le  output system, 

Further ,  i f  a d i r e c t  method 

Section 3 considers a l i n e a r  

There are, i n  

The concepts o f  single component regulat ion and 

For completely 

Thus it i s  possible t o  express any of the modes of  

A Suff ic ien t  Condition I n  O p t i m a l  Control The maximum pr inc ip le  
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I 
1 

of L. S o  Pontriagin and his students is a'necessary condition 

f o r  optimum controls, In many cases this condition is also 

sufficient. It is shown in Section 4 that in those cases where 

the system model is linear in the state variables and the cost 

functional is convex in the state variables this condition is 

sufficient. The control function may enter in an arbitrary way, 

but it is assumed that it is bounded in some manner. Use of the 

condition may require complex calculations, 

0 Time Optimal Control Of Linear Recurrence Systems 

is developed in Section 5 to compute the time-optimal control 
functions f o r  plants represented by linear recurrence equations 

Steering may be to convex sets defined by quadratic forms, 

A n  algorithm 

Time-Optimal Bounded Phase Coordinate Control Of Linear 

Recurrence Systems 

problem with bounded phase coordinates for systems modeled by 

linear recurrence equations, 

constraints of the phase coordinates can  be transformed into 

similar linear inequality constraints on the control variables 

The methods for finding the so constrained minimum are discussed. 

A convergent computational scheme is presented, which, unfortunately, - 

involves a large amount of equipment f o r  implementation, 

not Seem practical to solve this problem on line using present 

computer technology, 

Section 6 considers the time-optimal control 

It is shown that linear inequality 

It does 

Penalty Functions And Bounded Phase Coordinate Control 

considers the use of two different kinds of penalty functions to 
Section 7 



-7 - 

obtain approximate and exact so lu t ions  t o  the bounded phase 

I 
I 
I 
8 
8 
I 

8 
8 
I 
I 
I 

coordinate optimal control  problem. 

Existence of approximate solut ions i s  establ ished for t he  

cases where the penalty functions are added t o  the  integrand of 

the  performance cost  funct ional .  The penal ty  funct ions are non- 

mga t ive ,  have small values f o r  points  well  within the  phase 

cons t ra in ts ,  but  increase rapidly for poin ts  near  the  boundaries 

of t he  constraint  set. 

O p t i m a l  solut ions obeying the phase cons t ra in ts  are shown, 

under f a i r l y  general  hypotheses, t o  be obtainable  by using 

sequences of penalty functions that converge uniformly t o  zero 

on compact sets within t h e  phase cons t ra in ts  and converge 

uniformly t o  i n f i n i t y  i n  compact s e t s  e x t e r i o r  t o  the  phase 

cons t ra in ts  

Linear Programming And Bounded Phase Coordinate Control A 

maximum pr inc ip le  for time-optimal bounded phase coordinate 

cont ro l  of ordinary l i n e a r  d i f f e r e n t i a l  equation systems and an 

exis tence theorem a re  proven i n  Sect ion 8. Plant d i f f e r e n t i a l  

equations are then approximated by recurrence equations so the  

problem of obtaining "optimaltt t r a j e c t o r i e s  by backing out  o f  

the  o r ig in  can be reduced t o  one of l i n e a r  programming. 

The maximum pr inc ip le  permits determination of e x p l i c i t  

closed loop control  laws for low order  systems. 

The numerical procedures permit computation of  a dense 

family of "optimal" t r a j ec to r i e s  through the region of phase space 

that  i s  of i n t e r e s t  for a pa r t i cu la r  problem, These t r a j e c t o r y  



data could be stored to prov ide  for closed loop control 

Time Optimal Control With Amplitude And Rate Limited Controls 

Necessary conditions leading to a method for determination of 

bounded control amplitude and amplitude rate time optimal control 

trajectories by backing out of the origin are developed in Section 

9 .  The backing out procedure requires choosing the response time, 

the unaugmented system adjoint vector at the response time, the 

rate limited control variable amplitudes at the response time, 

and the rate limited control variable amplitudes at the initial 

time. 

then used to determine the allowable control variable trajectories 

from a finite set of possibilities, The state trajectories in- 

cluding the state at the initial condition can be determined in 

the usual manner from the control variable trajectories 

A set of consistency conditions on the control variables are 

The procedures permit computation of a dense family of 

optimal trajectories through t k  region of phase space that is of 

interest for a particular problem, 

be stored to provide closed loop control. 

These trajectory data could 

A Concise Formulation Of A Bounded Phase Coordinate Control 

Problem As A Problem In The Calculus Of Variations A short 

calculation is presented in Section 10 which transforms a bounded 

phase coordinate control problem into a problem in the calculus 

of variations, 

theory and computational methods of variational calculus to the 

problem of bounded phase coordinate control, 

The transformation permits application of the 
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MEASUREMENT 

Feedback control  implies that  var iab les  appearing i n  the 

control  law be measured. Sections 11, 12, and 13 consider t h ree  

p a r t i c u l a r  questions regarding measurement problems t h a t  arise i n  

applying state control  theories  t o  the  design of con t ro l l e r s  f o r  

flexible vehicles .  Section 11 provides a method for assessing 

the e r r o r s  incurred by control ler  designs that  neglect minor 

dynamics., If a f i n i t e  number of f lexure modes adequately re- 

present  a f l e x i b l e  vehicle ,  the s ta te  can be measured without 

knowing mode shapes by the method presented i n  Section 12.  

Sect ion 13 indica tes  t he  number of f lexure modes required t o  model 

a f l e x i b l e  launch booster  i s  small and appl ies  an ex i s t ing  control  

synthesis  technique t o  determine the number. 

Summaries of Sect ions 11, 12, and 13 are now presented. 

A Note On System Truncation The problem of  control  design of  

high order  systems based on the cha rac t e r i s t i c s  of the lower order  

e s s e n t i a l  elements of the  system i s  considered i n  Section 11 by 

approximation of asymptotic, sometimes cal led s ingular  per turbat ion,  

type.  A preliminary general development i s  given and de ta i l  

calculat ions f o r  a simple problem a r e  wri t ten out .  These r e s u l t s  

ind ica te  t ha t  the technique leads t o  the same design found by 

previous inves t iga tors  and the only advantage appears t o  be an 

estimate of e r r o r s  

State Determination For A Flexible Vehicle Without A Mode Shape 

Requirement 

a f l e x i b l e  vehicle  i s  f i n i t e ,  the  vehicle  dynamics may be 

If  the  number o f  f lexure modes required t o  represent  



represented by a f i n i t e  number of first order ,  ordinary d i f f e r e n t i a l  

equations. 

represent  t he  vehicle  dynamics; i t  i s  f u r t h e r  assumed t h e  

coe f f i c i en t s  i n  t h e  equations are known. It i s  shown tha t  i f  n 

d i f f e r e n t  sensors are placed a t  d i f f e r e n t  (but  unknown) pos i t ions  

on the  vehicle ,  t h e  s t a t e  vector can be determined by processing: 

the  outputs  of the sensors  with a least  squares f i l t e r .  

It i s  assumed t h a t  n f irst  order  equations s a t i s f a c t o r i l y  

T h i s  method would thus provide a reasonable means f o r  

measuring the state of a f l ex ib l e  vehicle  i f  tk number of  f l exure  

modes were small. 

f l exu re  modes i s  small. 

The next sec t ion  (13) ind ica t e s  t h e  number of 

An Application O f  The Quadratic Penalty Function Cr i t e r ion  To The 

Determination O f  A Linear Control For A F lex ib le  Vehicle I n  

Sect ion 13 l i n e a r  cont ro l le rs  a r e  designed f o r  a typ ica l  five-engine 

f lexible  rocket booster  by use of the quadratic penal ty  function 

c r i t e r i o n ,  

approximated using 6 sensors 

The r e s u l t s  show the  optimal cont ro l  can be s a t i s f a c t o r i l y  

LOAD DISTURBANCE CONTROL 

Load disturbance control i s  concerned wi th  determining how 

the  control  var iab les  should be dr iven t o  minimize t h e  e f f e c t s  of 

load disturbances.  Sections 14, 15, and 16 develop synthes is  

methods to minimize motions due to unknown but bounded dis turbances,  

present  a method f o r  preventing motion of c e r t a i n  components of 

the system s t a t e ,  and develop a method f o r  minimizing motions due 

to known disturbances.  

Summaries of Sect ions 14, 15, and 16 are now presented. 
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Minimum Disturbance Effects Control O f  Linear Systems With 

Linear Controllers 

is considered in Section 14. 
An optimal control problem for linear systems 

The optimal controller is one' 

from a class of allowable controllers that minimizes the effect of 

the worst possible disturbance from the class' of uniformly bounded 

disturbances- When the c lass  of allowable controllers is a 

family of fixed-gain controllers a method of solution is presented. 

For sufficiently simple systems the optimal controller may be 

found by analytical techniques, However, f o r  most realistic systems 

the use of a computer is required to determine the optimal 

controller e 

As examples, two second order systems are discussed with the 

optimal controllers being obtained analytically, and a fourth order 

system is discussed which corresponds to the rigid body representation 

of a launch booster. 

to obtain an approximation to the optimal controller. Some 

discussion of the computation time and computer results is given. 

This example required the use of a computer 

The examples illustrate that a method for the straight forward 

design of load disturbance controllers has been developed. 

A n  Alternate Derivation And Interpretation Of The Drift-Minimum 

Principle The design of a control system f o r  a plant with 

disturbance inputs I s  considered in Section 150 The motion'of the 

plant is assumed to be described by n linear, first-order constant- 

coefficient differential equations forced with a scalar control 

variable and a scalar disturbance. A linearg fixed-gain controller 

is assumed, In some cases it is possible to choose the gains in 
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such a manner that  a ce r t a in  type of invariance t o  dis turbances i s  

obtained for the  r e su l t i ng  controlled system, Conditions for 

obtaining such invariance are  derived using the concept of ,complete 

c o n t r o l l a b i l i t y .  The Drift-Minimum condi t ion i s  obtained as a 

spec i f i c  example , 

A Minimax Control For A Plant Subjected To A Known Load 

Disturbance An open-loop optimal control  problem i s  considered i n  

Sect ion 16 for p lan t s  t h a t  can be represented by l i n e a r  recurrence 

equat ions,  It i s  assumed tha t  the  control  i s  bounded and tha t  a 

known disturbance i s  present.  Then the  problem i s  t o  choose a 

control  sequence t h a t  minimizes  an e r r o r  c r i t e r i o n  based on a 

generalized dis tance function. 

The problem i s  formulated i n  a manner such that  l i n e a r  

programming techniques can be used t o  give the  optimal control  

sequence. 

problem are presented., 

Estimates on the  s i z e  of the r e su l t i ng  l i n e a r  programming 

A method 3.s c i t ed  for determining an optimal control  sequence 

as a r e s u l t  o f  varying a nominal disturbance provided the optimal 

control  i s  mown f o r  t h e  nominal case.  

An example i s  presented t o  i l l u s t r a t e  the techniques involved. 

The method provides a means for designing open loop con t ro l l e r s  

t h a t  a r e  important i n  t h e i r  own r igh t .  I n  addi t ion it provides 

f o r  determining the effect iveness  of closed loop load disturbance 

cont ro ls  (such as might be designed by the method of Section 1 4 ) ,  



-13- 

1, Harvey, C .  A . ,  "Measurement O f  The State Vector", 
NASA TN D-1590, 1962 

2 ,  Hapvey, C.  A . ,  "Modes of Control", NASA TN 0-1589, 1962 



APPENDIX A 

A REVIEW OF LINEAR PROGRAMMING TECHNIQUES* 
By H. E. Gollwitzer $- 

ABSTRACT 

The fundamental concepts of l i n e a r  programming are  in t ro -  

duced and the simplex method o f  computation is  b r i e f l y  discussed. 

An appl ica t ion  of l i n e a r  programming cal led parametric l i n e a r  

programming i s  introduced and b r i e f l y  developed. 

INTRODUCTION 

Linear programming i s  concerned with a spec ia l  c l a s s  of 

maximum and minimum problems. A l i n e a r  programming problem, i n  

generai ,  i s  tha t  of maximizing or minimizing a given l i n e a r  com- 

binat ion of var iables  subject  t o  a s e t  of l i n e a r  cons t ra in ts  on 

these var iables .  The theory o f  l i n e a r  programing gives general 

results for the exis tence of optimizing solut ions and involved the 

study of l i n e a r  i nequa l i t i e s .  

The most  common method f o r  computing solut ions t o  a l i n e a r  

programming problem is  cal led the simplex method. The simplex 

rnethod i s  a computational algorithm which leads t o  a solut ion of  

a l i n e a r  programming problem i n  a f i n i t e  number of i t e r a t i o n s .  

The hypotheses under whfch the simplex method works are  f a i r l y  

general .  

programming problems. 

The method i s  used almost exclusively i n  solving l i n e a r  

_ _ _ p - - . - - - - y - - - - - - - - - _ - - - - - - - - - - - - - - _ _ - _  
* Prepared under contract  NASw-563 for the NASA. 

Minneapolis, Minnesota. 
$ Research Engineer, Minneapolis-Honeywell Regulator Company, 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
E 
1 

-2- 

In the following paragraphs the linear programming problem 

is b r i e f l y  developed, t he  slmplcr, method outlined, and a concept 

called parametric linear programming introduced. 

LINEAR PROGRAMMING 

The linear programming problem is defined and the necessary 

notation developed, 

DEFINITIONS 

The standard linear programming problem is that of finding 

nonnegative numbers ei,i=l,...,m which either maximize o r  minimize 

the given linear combination 

m 
i=l r, fiYi 

subject to the set of linear constants 

m 

The linear combination to be maximized o r  minimized is called the 

objective function, 

a linear programming problem when no reference is necessary as to 

the exact type of problem under consideration. 

The term "linear program" is used to denote 

Nonnegative 

numbers- ti, i = l,,o,,m which satisfy the constraint conditions 

are called a feasible solution of the linear program. A feasible 

solution which maximizes or minimizes the objective function is 

called an optimal solution, 

function with an optimal solution is called the value of the 

linear program 

The result of evaluating the objective 

A fundamental fact about linear programming is that to every 
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l i n e a r  program there corresponds another l i n e a r  program cal led the 

dual program, 

the cen t r a l  r e s u l t s  i n  t h e  theory of l i n e a r  programming are con- 

cerned wi th  the relat ionships  between a l i n e a r  program and i t s  dual.  

These two programs are c lose ly  re la ted  and many of 

The following example i s  given t o  i l l u s t r a t e  the manner i n  which a 

l i n e a r  program i s  re la ted  t o  i t s  dual .  The standard maximum 

program is  tha t  of f inding nonnegative numbers ti, i = l J o s e , m  

such that  
m 

i s  a maximum i=l = ti% 

subject  t o  
m 

The dual program i s  t o  find numbers q such tha t  3' 
n 

i s  a minimum 
j=l = 'Ij% 

subject  t o  
n 

( 3 )  

(4)  

where the numbers q are unrestr ic ted i n  s ign.  
j 

VECTOR AND MATRIX THEORY 

The form of l i n e a r  programming problems leads t o  the short-  

hand of vector  and matrix notation. If A is  an mxn matrix,  then 

A '  denotes the transpose of A .  Vectors w i l l  be considered as row 

vectors  and an n-vector x will denote the n-tuple ( X ~ , ~ . ~ , X  ) .  n 
A vector  x i s  nonnegative if and only i f  each of i t s  components a re  

nonnegative. The inner  product of two n-vectors x and y i s  denoted 

as xy. I n  vector  and mat r ix  notat ion the  standard maximum problem 



and its dual are formulated as follows: 

an n-vector by and an m-vector c, find a nonnegative vector x 

such that 

Given an m x n  matrix A, 

xc is a maximum 

subject to ( t:) 

XA = b 

and the dual problem is that of finding an n-vector y such that 

is a minimum Yb 

subject to ( 6 )  
Ay > c - 

Let M = (1, ,m] denote the set of' positive integers from 

Let aly.e.,am be m-vectors and let S be a subset of M. 1 to m. 

A solution x = {el y .  . ,em} of the equation 
m 

i=1 
eiai = b 

is said to depend on the set S if ti = 0 for i f S, A solution 

of (7) is called a basic solution if it depends on a set S such 

that the m-vectors ai are linearly independent for i E S o  

basic nonnegative solution is defined similarily. 

A 

THE CANONICAL PROBISM 

One type of  linear program which is quite useful in connection 

with the simplex method is that in which the unknown vector is non- 

negative and the constraints are equations. 

is called the canonical problem. 

is given as follows: 

Given an mxn matrix A, an n-vector b, and an m-vector c, find a 

The type of problem 

The canonical minimum problem 
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nonnegative vector x such that 

xc is a minimum 

subject to 

xA = b. 

The canonical maximum problem is similarily defined. 

The canonical program and the standard program are equivalent 

in the sense that either problem can be transformed in the other, 

For example, the canonical maximum program is that of finding a 

nonnegative vector x such that 

xc is a maximum 

subject to 

xA = b. 

The equivalent standard program is that of finding a nonnegative 

vector x such ,that 

subject to 

xc is a maximum 

x A < b  - 
-xA < -b, - 

The standard maximum program is that of finding a nonnegative . 

vector x such that 

xc is a maximum 

subject to 

xA < b. - 
This is transformed into a canonical program by adjoining one 

new nonnegative variable to each constraint so that equality is 

I 
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always preserved. 

nonnegative vector x such that  

I n  matrix notat ion the problem is  t o  find a 

XC i s  a maximum 

subject  t o  

where I i s  the mxm i d e n t i t y  matrix and z is  a nonnegative m-vector. 

The Components of z a re  sometimes cal led s l ack  var iables .  

components of z do not en te r  in to  the object ive funct ion and serve 

only t o  preserve equal i ty  i n  each of the cons t ra in ts .  

i t  is  noted that  any maximum problem can be treated as a minimum 

problem by negating the objective funct ion,  and conversely, 

The 

Fina l ly ,  

The following example w i l l  ind ica te  how a f a i r l y  general  

l i n e a r  program can be put into canonical m i n i m u m  form. This w i l l  

be done i n  three main s teps .  

8El -t- 194, + 7E3 subject  t o  

Find numbers e,, e,, 4 tha t  maximize 3 

4 ,  - 4, + 4, 0 

The first step i s  t o  ge t  a l l  var iables  expressed as the difference 

of two nonnegative var iables .  

object ive funct ion s o  that  a minimum problem can be considered. 

The next s t ep  i s  t o  negate the 

Let 4, = - x,, 4, - - 3 - x4, 4, = x5 - x6. 
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With these two steps carried out the problem now reads; 

Find nonnegative numbers xi, i = 1, . . . ,6 
such that 

3x7 - 
A 

x1 - 
-xl + 

The third step is to a d the nonnegative slack variables 

9yx89x9 
nonnegative variables xj. , 
-i;x 

so that the final canonical minimum problem is to find 

i = 1,...,9 such that 

+ d::,-, - l$x7 + 19x4 - 7x- + 7x6 is a maximum subject to I L 3 3 

If a solution for this problem is obtained, the resulting xi's w i l l  

permit determination of the optimal tits in (9). 

THE SIMPLEX METHOD 

The simplex method is an iterative procedure for finding an 

optimal solution to a linear program if one exists. 

algorithm involves lengthy arithmetic calculations at each 

iteration so it was not until the advent of large, high-speed 

digital computers that large linear programs could be solved. 

The basic 

The simplex method is designed around the canonical minimum 
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o r  maximum problem and thus it may be necessary t o  transform the 

given problem i n t o  a canonical form. 

nonnegative vector  x such t h a t  

The problem i s  t o  f ind  a 

xc i s  a minimum 

subject  t o  
( 1 1  1 
\ A & /  Ax = b 

where x i s  an n-vector, c an n-vector, b an m-vector and A 

an mxn matrix.  I f  the equation (11) i s  considered as a vector  

i d e n t i t y ,  then the problem i s  t o  f ind  a nonnegative vector  

x = (xl , ,  . ,%) such tha t  

xc is  a minimum 

subject  t o  
i n 

C xia = b 
i=1 

a2i,...,ami) and a where ai = (ali, 

I n  a canonical program an optimal vector  

optimal vector  i f  it is  a basic so lu t ion  of the  cons t ra in t  equation 

Ay = b. 

l i n e a r  program has an optimal vector ,  i t  has a basic  optimal vector .  

T h i s  necessary condition yields  a proof tha t  a canonical l i n e a r  

program can be solved i n  a f i n i t e  number of s teps .  

i s  the i j th component of A.  

is  cal led a bas ic  
13  

From the  theory of l i n e a r  programming, if a canonical 

The proof 

follows because there a re  only a f i n i t e  number of bas ic  so lu t ions  

t o  (12) and hence ce r t a in ly  a f i n i t e  number of nonnegative bas ic  

so lu t ions ,  

bas ic  so lu t ion  i n  order  t o  find the nonnegative bas ic  so lu t ion  that  

optimizes the  l i n e a r  program, 

method f o r  searching f o r  the basic  optimal vector .  

It would be time consuming t o  check every possible  

The simplex method gives  an order ly  

The main idea 
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is to first find a nonnegative basic solution of (11) and to then 

find another nonnegative basic solution that reduces the value 

of the objective function. The purpose of this is to eliminate 

the testing of  nonnegative basic solutions that do not decrease 

the value of the objective function. 

finite number of nonnegative basic solutions, this search will 

eventually find the optimal basic solution if it exists. 

Since there are only a 

There is also the question of whether this process always 

works. 

optimal solution. These cases are called degenerate. Degeneracy 

occurs when the simplex algorithm becomes ambiguous to use. There 

are methods for handling degenerate cases so that an optimal 

solution can be found (reference 1). 

In the discussions of' the simplex method the assumption was 

In some cases the simplex method may fail to give an 

made that a nonnegative basic solution was known. This initial 

nonnegative basic solution can be found in the following manner. 

The original problem was to find a nonnegarive n-vector x such 

t h a t  

(10) 

AX = b, 01) 

xc is a minimum 

subject to 

The vector b is assumed to be nonnegative, and c a n  be accomplished 

by changing the signs of the necessary equations. Let 

c = (l,l,...,l) be an m vector and let y be a nonnegative m vector. 

The problem of  finding a nonnegative basic solution of (11) is 

that of finding nonnegative vectors x and y such that 
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- 
YC is a minimum 

AX + yI = b (14) 
where I is th, identity matrix. A theorem linear 

program states that Ax = b has a nonnegative basic solution if 

and on ly  if the value of (13) is zero,  This gives the initial 

nonnegative basic vector, and hence it is necessary to solve a 

linear program to get an initial nonnegative basic vector. It 

is then necessary to obtain an initial nonnegative basic vector 

to start the solution of (13) , (14) 
setting x = 0 and y = b, which is a nonnegative basic vector 

since b was nonnegative. 

then the original program does not have a nonnegative basic 

solution and hence no optimal solution. 

on the solvability of a linear program. This concludes the 

discussion of the simplex method, 

This is accomplished by 

If the minimum value of (13) is not zero 

This affords a quick check 

PARAMETRIC LINEAR PROGRAMMING 

The method of parametric linear programming is a technique 

that permits the computation of new optimal solutions, as a re- 

sult of changes in the data, without solving the entire linear 

program again. 

following standard canonical minimum problem: 

numbers xi, i = 1,. . .,n that 

This is best illustrated by considering the 

Find nonnegative 

cx is a minimum (15) 

AX = b. (16) 

subject to 
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It i s  of i n t e r e s t  t o  invest igate  the  changes i n  an optimal 

so lu t ion  if say, the  components of the  vector  b a r e  changed i n  a 

prescribed manner. It would be advantageous t o  have a method 

t h a t  would give changes i n  the optimal so lu t ion  a s  a function of 

changes i n  the  components of b without solving another l i n e a r  

pmgrama T h i s  i s  a consequence of t he  l a r ze  amount of e f f o r t  

needed t o  solve l i n e a r  programs. Parametric l i n e a r  programming 

i s  one such method. 

Let 

4 '  = ( t i , * o * , E A )  ( 17 

be an opt imal  so lu t ion  t o  (16).  The so lu t ion  w i l l  depend on m 

l i n e a r l y  independent column vectors ,  and the  remaining 4 '  w i l l  be 

zero. Assume for convenience that  the  so lu t ion  depends on the  

first m column vectors  i n  (16) 

3 

T h i s  i s  s u f f i c i e n t  because any 

o the r  arrangement can be relabeled t o  give t h i s  form. Then 

= ((i,..,,f~, Oyo..,O)o The equation (15) w i l l  appear a s  

+ + a l m  4' m = bl 
* 0 0 

0 0 

0 e . 0 e . . 0 

amlei + a o O o .  + a m m m  e t  = b, 

where the  a 

because of re label ing.  Letting r = (7 ) be the  matrix of 

coe f f i c i en t s  i n  (1.8)~ and f = ( ~ i , o o e y 6 ~ ) ,  i t  can be wri t ten a s  

i n  (18) can be d i f f e ren t  from the a i n  (16) 1 3  i 3  
13  

Since the columns of r a r e  l i nea r ly  independent I' i s  non-singular 

and 4 = r" lb ,  where r-l denotes the  inverse of  r. 
so lu t ion  can then be expressed a s  

The optimal 
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m 

where j3 i s  the i j  element o f  rml. 
i j  

Equation (20) expresses the  optimal so lu t ion  i n  terms of the 

known vector  b and the  matrix re 

ti 
so lu t ion  w i l l  remain optimal with respect  t o  the  chosen basis 

( reference 2) ,  

where 8 i s  a continuous var iable ,  8 > 0 and p 

Since the solut ion i s  optimal, 

0, i = l,oeo,m, and as long as t h i s  condition holds the 

Let the b be allowed t o  vary by an amount p 8, 

J 
j 3 

a given constant .  - 
Define b = b j  + pje, j = l J O . . , m o  The so lu t ion  4 w i l l  remain 

j e  
f eas ib l e  and hence optimal with respect  t o  the  chosen basis i f  

m - 51, - j=1 bje'ij L O ,  

is the  value of the ith component of the optimal 

i = l , . . . , m ,  

where e t  
so lu t ion  when the components of b are varied, ,  Now i f  

ie 
m 
Z p g > 0, i = 1, . e ,m,  the so lu t ion  i s  termed "open", as 

j=1 J i j  - 
8 can be extended t o  any posi t ive value and the  program w i l l  

m 
remain f eas ib l e  and hence opt imal .  But i f  C pjBij  < 0 f o r  

j=1 

some i, then i f  8 is  allowed t o  exceed a ce r t a in  value Omax, the  

so lu t ion  i s  no longer feasible  and hence not optimal. This  

maximum value can be determined i f  the  so lu t ion  i s  not "open" 

from the constraint  (21 ) .  This  value of emax i s  given by 
m 

j=1 h j b j  
= min max A e 
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m 
where A = (i I 2 f3 p < O l e  The value of Bmax i s  determined by j=1 i d  j 

l e t t i n g  equal i ty  hold i n  (21) for i E A .  

for which t h i s  maximum occurs, i f  8 i s  increased by E, E > 0, the  

var iab le  ti w i l l  go negative,  

6 beyond QmaxJ ti must be replaced by some var iab le  not yet  i n  

the present basis. 

i s  explained i n  reference 2 ,  

Since there i s  some i 

Thus i f  i t  is  desired t o  increase 

T h i s  replacement process w i l l  not be given but 

I n  conclusion, i f  an optimal so lu t ion  i s  known then ce r t a in  

changes i n  the statement of the problem can be adequately handled 

without solving an e n t i r e l y  new problem. 

CONCLUSIONS 

The concept of l i n e a r  programming has been introduced, and 

the philosophy of the simplex method b r i e f l y  explained. The 

technique of parametric l i nea r  programming has been introduced 

and b r i e f l y  developed. 
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APPENDIX B 

CONSIDERATIONS IN LOAD 

DISTURBANCE CONTROL 

By C.  A .  Harvey 

Two i n i t i a l  r e s u l t s  a r e  presented which were obtained i n  

attempts t o  gain some understanding of the following optimal control  

problem. 

d i f f e r e n t i a l  equation 

Suppose t h a t  the system i s  represented by the vector  

(1) 4 = AX + BU + Dg, ~ ( 0 )  = 0, 0 5 t 5 T < 00 
where x i s  an n-vector representing the s t a t e  of the system, 

u is an m-vector representing the  control  var iab les ,  

g i s  an r-vector representing a diwturbance, and 

A, B, and D a r e  continuous matrices of appropriate s i ze .  

The vector  g i s  assumed t o  be a member of some prescribed c l a s s  of 

disturbances 8.  

of a specif ied allowable class  of controls  U. 

problem i s  then t o  f ind  a control u i n  the  c l a s s  U that  minimizes 

C ( u )  when C(u) i s  defined by 

Also, it i s  assumed t h a t  the  control  u 3.s a.,member 

The optimization 

~ ( u )  = max max max Ixi( t ;u ,g>l  
l < i < n  gEG OLtLT 
- u  

where xi( t ;u ,g)  represents the ith component of the  so lu t ion  t o  ( 2 1 ,  

The first r e s u l t  dea ls  with tk uniqueness of optimal cont ro ls .  

I% t he  c l a s s o  Q ,  does not contain disturbances with enough 

va r i a t ions  then the optimal control i s  not unique. 

example i s  that whioh occur8 when G i s  empty; then any control  

A very t r i v i a l  
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given by A = 1; # B =  , D =  Let  T be any pos i t ive  r e a l  0 

1 1 

f(X1,x2) > 0 when x1 > 0 and x2 > 0 

f(x1,x2) < 0 when x1 < 0 and x2 < 0 

The o ther  r e s u l t  concerns a conjecture that  the  optimal 

control  may be obtained as an optimal control  f o r  some i n i t i a l  

condition problem. Two problem statements a r e  introduced t o  make 

poss ib l e  a precise  statement of the  conjecture ,  

P1: Consider the system = Ax + bu where x i s  an n-vector, the 

system s t a t e ,  u i s  a sca la r ,  the control  and A i s  an nxn matrix, 

b an n-vector, Let x ( t ;  xo,u) denote t h e  solut ion t o  the  system 

with i n i t i a l  conditions x ( 0 )  = xo and control  u. 

i s  t o  f ind u(x)  sa t i s fy ing  cer ta in  r e s t r i c t i o n s  such t h a t  

The problem then 

max [ max ( max Ixi( t ;xo,u) l )  J i s  a minimum 

where 0 i s  some subset of t h e  Euclidean n-space and T” > 
(possibly i n f i n i t e )  

l < i < n  - -  ~ ~ € 0  O < t < l ?  - -  
0 

P2: Conaider the sys tem’i  = Ax -t bu -t g ( t ) ,  where g ( t )  i s  an 

n-vector belonging t o  a class G; x, u ,  A ,  and b are  a s  i n  Pl0 The 
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problem i s  to f ind  u(x)  sa t i s fy ing  the same r e s t r i c t i o n s  as i n  P1 

such that 

max [ max ( max I xi( t ;O,u,g) l )  1 i s  a minimum 
g ( t ) e G  iLiLn O<t<T - -  

where x(t;O,u,g) denotes the solut ion of x = Ax + bu + g with 

x (0 )  = 0. 

The conjecture i s  tha t  a solut ion to P1 i s  a so lu t ion  t o  P2" T h i s  

conyecture i s  r e a l l y  qui te  vague i n  the sense that the  s e t  ti i n  P1 

i s  not completely defined and tha t  P i n  P1 i s  not completely 

spec i f ied ,  

statement of P2 e 

concerning the conjecture.  L e t  A = E 
U ( X )  be of the  form xl(cos e )  + x2(s  n 6 )  with the parameter 8 

being i n  the i n t e r v a l  [0,2n), 

Pg: 

These would have to be related to T and 0 i n  the 

The following example is presented a s  a p a r t i a l  r e s u l t  

b = []and l e t  

Then t h e  problem re la ted  to P1 is: 

with $2 chosen to be a closed c i r c u l a r  d i sc  and W chosen t o  

be i n f i n i t e ,  f ind  8 f [0,2n) such t h a t  

J,(o) = max (maxlrnax Ixl(t;xo,u) I ,  maxlx2(t;xo,u) 11) 
t > O  
P 

t > O  X o € Q  I 

i s  a minimum where Q = {(x,y):x"+y* < R2\ and u = x1(cos8)+x2(sin6), - 
The problem re la ted  t o  P2 is :  

Ps: Find 8 e[0,2n) such tha t  

i s  a minimum where T i s  a su f f i c i en t ly  large pos i t ive  r e a l  number, 

u = xl(cose) + x,(sin e ) ,  and G = ~ ~ ( t ) : @ ; ( t ) - c , I c I ( R " ~ .  - 
It i s  possible  t o  solve P 3  t o  f ind  the optimal 8 ,  say 6'. 
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The value of 8' is approximately 209.4' and J2(2O9.4') is 

approximately 1.635 K2* 

any 8 sa t i s fy ing  0 

t o  g ( t )  = K2 on the i n t e r v a l  [O,oo)  is unbounded. 

su f f i c i en t ly  large J,(Q) > 2K2 if 8 s a t i s f i e s  0 < 8 < 7r or 

2-12 < 8 < 2n. J " /  - 
equation cos Bo = 2 - 6. 
first component of t he  solut ion corresponding t o  g ( t )  = K* approaches 

K2 (-cos 

for Bo - < 8 < 3=/2 and hence J2(8) > 2K2 if T is s u f f i c i e n t l y  large,  

For 8 i n  the  in t e rva l  [n,B0) it is possible  t o  obtain a s  T 

To show t h i s  it may be establ ished that  for 

8 < n or  3n/2 8 < 2n the  so lu t ion  corresponding 

Hence for T 

- 
Let, 8 be i n  the  In t e rva l  (n,3~/2) and satisfy the 0 

For any 8 sa t i s fy ing  eo < 8 < 3 ~ / 2  the  - 

a s  t approaches i n f i n i t y .  But K2 (-cos 8)01 > 4K2 

1 where a = 

assumes an absolute minimum f o r  8 = O 0 ,  

sin 8 and @ ( e )  = p ~-sina8-4cos8.  T h i s  expression 

For T s u f f i c i e n t l y  la rge ,  

8' w i l l  a l so  minimize J,(8). 

Now for the problem P+1, t h i s  value of 8' is not optimal, I n  

f a c t ,  there i s  no value of 8 i n  the i n t e r v a l  (n,eo) which is 

optimal f o r  PI. Thus the problem PI is not equivalent t o  P;, 

It i s  possible  tha t  choosing a d i f f e ren t  0 for the  problem PI 

may lead t o  a problem which has the  same so lu t ion  as Py2. 


